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In this report we describe the construction and training of Artificial Neural Networks 

(ANNs) capable of rapidly solving the forward and inverse kinematic problem for the 

pose of a planar 3-degree of freedom parallel manipulator. Firstly, the analytical 

expressions for the inverse kinematic problem are developed. Secondly, these 

expressions are implemented in Matlab in order to obtain exact solutions for a number 

of discrete positions in the reachable workspace for a specified parallel manipulator. 

Thirdly, an ANN is constructed and trained using a subset of the exact solutions and is 

shown to be capable of finding highly accurate solutions to the inverse kinematic 

problem over the entire reachable workspace. Finally, and most importantly, an ANN 

is then constructed and trained to rapidly solve the forward kinematic problem with 

high accuracy, while entirely avoiding the costly iterative numerical solution that is 

normally required. 

I. Introduction  

Parallel manipulators are multi-degree of freedom robots with multiple articulating limbs connected 

to a single platform, or end-effector, thus forming multiple closed-loop kinematic chains between the 

limbs, platform, and base. Parallel manipulators are often used for “pick-and-place” material handling 

tasks (for example, the delta robot in Fig. 1a) or as flight/automobile simulator platforms (for 

example, the Gough-Stewart platform in Fig. 1b).  

  

Figure 1: A delta robot (a); a Gough-Stewart platform (b). 

For this report we take as inspiration the Gough-Stewart (GS) platform, also known as a hexapod or 

six-axis platform. The GS platform normally consists of 3 pairs of prismatic actuators connecting the 

(a) (b) 
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base to the end-effector, all of which act in combination to produce 6 degrees of freedom at the 

working platform: 3 translational DOF in the Cartesian x, y, and z directions, and 3 rotational DOF 

about each of the Cartesian axes (also known as roll, pitch, and yaw).  

A simpler variation of the standard 6-DOF GS platform is the 2-legged planar parallel manipulator 

illustrated in Fig. 2.  Each prismatic joint is connected to a fixed base and the moving platform by 

passive revolute joints. For planar motion, the number of DOF (i.e., the mobility) of the mechanism 

can be verified using the equation: 

  

𝑀 = 3(𝑛 − 𝑔) + ∑ 𝑓𝑖

𝑔

𝑖=1

 

= 3(5 − 6) + 6 

= 3 

Eq. ( 1 ) 

where n is the number of moving links, g is the number of joints, and fi is the number of unconstrained 

DOF of the ith joint. Because this configuration has 3 DOF (translation in the x- and y-directions, and 

rotation about the z-axis) and each leg consists of two revolute joints and a prismatic actuator, we 

will denote this configuration as a planar 3-RPR parallel manipulator, or simply as a 3-RPR. Notice 

that in this configuration the dual prismatic joints must work synergistically to produce translation 

in the x and y directions, as well as a rotation about the z axis.  
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Figure 2: A Planar 3-RPR Parallel Manipulator 

One might note a similarity between a 4-bar linkage and the 3-RPR. The main difference is that in the 

3-RPR the length of each leg is permitted to change, and the kinematic problem becomes a function 

of the prismatic actuator length. 

II. Mechanical Configuration, Posture, and Platform Pose 

Broadly speaking, kinematics refer to the study of motion – this includes position, velocity, 

acceleration, as well as trajectory.  Each of these topics are important in the design of a parallel robot. 

In this report, we are interested only in the fundamental task of relating joint parameters to the 
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position and orientation of the working platform (also known as the “pose” of the platform) – in other 

words, we will determine the “posture” of the mechanical system for any desired platform pose.  

We must define some useful geometric parameters. First, let the Cartesian pose of the platform be 

denoted by the set:  

  𝜒 = (𝑇𝑥  , 𝑇𝑦, 𝜑) Eq. ( 2 ) 

where (Tx, Ty) are the components of a 2D translation vector, T, from the origin of the base reference 

frame, O, to the platform coordinate system, Po, and φ is the platform rotation measured from the 

positive base frame X-axis. The active prismatic joint variables are the leg lengths: 

  
𝐿 = (𝑙1, 𝑙2) 

= (𝑎1 + 𝑑1, 𝑎2 + 𝑑2) 
Eq. ( 3 ) 

where ai is the minimum length of the ith leg. Note that the prismatic joint extension of the ith leg is 

actively controlled within the range 0 ≤ di ≤ dmax. Therefore, the total leg lengths may vary between 

ai ≤ Li ≤ ai + dmax The passive revolute joint angles, measured CCW from the base X-axis, are:  

  𝜃 = (𝜃1, 𝜃2) Eq. ( 4 ) 

As shown in Fig. 3a, each link in the 3-RPR can be represented by the vectors: 

Vector Reference Frame Description 

T Base, O From O → Po 

b1 Base, O From O → B1 

b2 Base, O From O → B2 

l1 Base, O From B1→ P2 

l2 Base, O From B2 → P2 

p1 Platform, Po From Po → P1 

p2 Platform, Po From Po → P2 

Notice that vectors p1 and p2 are described in the platform reference frame (x’, y’).  
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Figure 3: Directed line segment description (a), Specific geometric values (b). 

We will analyze a specific 3-RPR configuration by assuming the static geometric values (see Fig 3b): 

b1 = (-4, 0) p1 = (-2, 0) a1 = 4 

(a) (b) 
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b2 = (4, 0) p2 = (2, 0) a2 = 4 

Finally, we also specify a default “home” position for the working platform, chosen here as:  

𝜒 = (0, 6, 0°) 

III. Kinematic Equations 

The kinematic equations relating the platform pose to the leg and joint configuration (i.e., the posture 

of the system) can be approached in two complimentary ways: 

I. Forward Kinematics – The forward kinematics problem for the 3-RPR is stated as: “Given the 

current length and angle of each leg, calculate the platform pose.” 

II. Inverse Kinematics – The inverse kinematic problem for the 3-RPR is stated as: “Given the desired 

platform pose, calculate the required leg lengths.”  

The robotics literature appears to favor rather tedious compositions of transformation matrices in 

order to calculate the IKP. While this is understandably needed for serial manipulators, we have 

found this to be unnecessary for a parallel manipulator and will take a more direct approach, as 

follows. For the inverse kinematic problem (IKP), we may specify the desired platform pose and 

calculate the leg vectors using the equation:  

  𝒍𝑖 = 𝑻 + 𝑹 ∙ 𝒑𝑖 − 𝒃𝑖        𝑓𝑜𝑟 𝑖 = 1,2 Eq. ( 5 ) 

where R is the rotation (transformation) matrix for the desired platform angle. Notice that the IKP of 

Eq. (5) can be calculated independently for each leg for any given pose, χ, with the same result. 

(However, we will later show that the equations to solve the FKP cannot be calculated independently, 

which complicates matters somewhat). For example, the IKP using leg 1 we obtain: 

 

 
𝒍1 = {

𝑙1𝑥

𝑙1𝑦
} 

= {
𝑇𝑥

𝑇𝑦
} + [

𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

] ∙ {
𝑝1𝑥

𝑝1𝑦
} − {

𝑏1𝑥

𝑏1𝑦
} 

Eq. ( 6 ) 

where the components 𝑙1𝑥  𝑎𝑛𝑑 𝑙1𝑦 are the only unknowns. We may then solve for the prismatic joint 

extension:  

  𝑑𝑖 = |𝑙𝑖| − 𝑎𝑖 Eq. ( 7 ) 

We can also find the leg angles θ1and θ2 (shown in Fig. 2) using the vector dot product:  

  𝜃𝑖 =
acos(𝒃𝑖 ∙ 𝒍𝑖)

|𝒃𝑖||𝒍𝑖|
 Eq. ( 8 ) 

Notice that for θ1 the negative of bi should be used, which gets us the angle we are interested in. Thus, 

the IKP is straight-forward for the 3-RPR and most other parallel manipulators, and is relatively 

computationally inexpensive.  
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For the forward kinematic problem (FKP), we specify values for the vectors describing the legs 

connection points on the base and working platform (bi and pi, respectively), as well as the leg vectors 

(li), and solve for the platform pose, 𝜒 = (𝑇𝑥  , 𝑇𝑦, 𝜑).  

Rearranging the vector loop equations of Eq. (2), we obtain a system of 4 simultaneous nonlinear 

trigonometric equations (2 for each leg):  

 {
𝑇𝑥

𝑇𝑦
} + [

𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

] ∙ {
𝑝1𝑥

𝑝1𝑦
} = {

𝑙1𝑥 cos 𝜃1

𝑙1𝑦 sin 𝜃1
} + {

𝑏1𝑥

𝑏1𝑦
} Eq. ( 9 ) 

 {
𝑇𝑥

𝑇𝑦
} + [

𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

] ∙ {
𝑝2𝑥

𝑝2𝑦
} = {

𝑙2𝑥 cos 𝜃2

𝑙2𝑦 sin 𝜃2
} + {

𝑏2𝑥

𝑏2𝑦
}  

The solution to these equations may be approximated using an iterative numerical approach, for 

example, with the Newton-Raphson method. This becomes a potential bottleneck for parallel 

manipulators with larger DOF, such as in the case of the standard 6-DOF Gough-Stewart platform 

(with 18 simultaneous nonlinear iterative equations), and in the case where rapid movement is 

required.  

IV. The Neural Network Approach 

Artificial Neural Networks (ANNs) are functional mapping systems that may be advantageous when 

modeling complex nonlinear systems, and in cases where closed-form solutions are unknown or 

difficult to obtain. Loosely based on biological principles observed in the nervous systems of animals, 

ANNs consist of a (sufficiently) large number of simple processors linked by weighted connections. 

Depending on the connections and network architecture, many complex functions can be 

approximated with arbitrary accuracy. Like the biological systems they are based upon, ANNs “learn” 

from example – using input patterns and desired outputs as training data, the connection weights 

between processing units (the “neurons”) can be adjusted  so that the network produces the correct 

output; i.e. the network is adaptive. This can be useful, for example, to account for nonlinear effects 

which might otherwise be ignored in simplified analytical models. In addition, multiple inputs and 

outputs may be processed simultaneously, resulting in very fast computation.  

All of these properties indicate that an artificial neural network could be a suitable tool for both 

forward and inverse kinematic problems for a parallel manipulator. In the following section of this 

report we focus upon using the Matlab Neural Network Toolbox which provides many built-in 

functions and algorithms for creating and training ANNs, and analyzing the network output.  

V. Analytical IKP Solution 

The IKP of Eqs. (5-8) were solved, subject to the geometric values (ai, bi, pi) given above. We have also 

constrained the mechanical system so that physically realistic “admissible” solutions fall within an 

acceptable range of values:  

0 ≤ 𝑑𝑖 ≤ 4 

𝜃1 ≤ 90° 

𝜃2 ≥ 90° 
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Solutions outside of these accepted ranges are flagged as “inadmissible”. 

The complete analysis was completed using the process described by the flowchart in Fig. 4, which 

illustrates the relationship between different programs, inputs, and output results.  

Note that we have provided an interactive solution process: 

1. From the Matlab command line interface (CLI), call the script ‘IKPP.m’:  

>> IKPP() 

 Calling this script with no arguments calculates the inverse kinematic problem for 

a default “home” position, writes the solution to the command window, and plots 

the resulting posture (see Fig. 5a). 

 A warning is issued for “inadmissible solutions”, for which the leg lengths or leg 

angles are out of the acceptable range of values. 

2. You may call IKPP.m from the CLI with input arguments defining the desired platform pose. 

For example: 

>> IKPP(-1.8,6,12.5)  

 This will calculate the inverse kinematic problem for the platform pose input 

using the format of Eq. (2): 𝜒 = (𝑇𝑥  , 𝑇𝑦, 𝜑) = (−1.8, 6, 12.5°) 

- The solution (leg lengths and angles) will be written to the command window, and 

the plot will update (see Fig. 5b). 
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IKPP.m

WorkspaceGen.m

Interactive 
Geometry Plot

Workspace Plot

IKPSoln.xlsx

Output:
[Tx,Ty,θ,L1,L2,D1,D2,θ1,θ2]

IKPNNtrain.xlsx

Output:
[Tx,Ty,θ]

IKPNNtarg.xlsx
[L1,L2,θ1,θ2]

FKPNNtrain.xlsx
[L1,L2,θ1,θ2]

FKPNNtarg.xlsx
[Tx,Ty,θ]

IKPNN.m

FKPNN.m

IKP Neural Network

FKP Neural Network

Workspace Plot

Workspace Plot

 

Figure 4: Analysis Flowchart 
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Figure 5: Interactive IKP Solutions. (Generated using ‘IKPP.m’) 

Subject to the mechanical geometry and joint constraints given above, there exists a finite set of 

points that the origin of the manipulator platform, Po, can reach. We call this region the robot 

“workspace”. We can distinguish between the “reachable” workspace and the “dexterous” 

workspace, defined as: 

 Reachable Workspace: the region that can be reached with at least one platform orientation. 

 Dexterous Workspace: the region that can be reached with any platform orientation. Thus, 

the dexterous workspace is a subset of the reachable workspace.  

To generate a set of admissible solutions, we provide the Matlab script ‘WorkspaceGen.m’. As 

described in the flowchart of Fig. 4, ‘WorkspaceGen.m’ automatically generates several Microsoft 

Excel spreadsheets containing analytical IKP solutions and useful ANN training data. In addition, this 

script generates a plot illustrating the 3-RPR workspace for the specified mechanical geometry, using 

red squares to describe the reachable workspace and blue squares to describe the dexterous 

workspace. The script can be used to produce results for any desired number of discrete positions. 

For example, the plots in Fig. 6 show increasingly coarse discretizations of the workspace, with 

correspondingly smaller numbers of evaluation points. Of course, not all of the evaluation points will 

result in admissible solutions in either the reachable or dexterous workspaces. Inadmissible 

solutions are intuitively indicated by blank space.  

(a) (b) 
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Figure 6: Workspace plots generated by evaluating 310,000 different poses (a), 9,261 
different poses (b); and 1,331 different poses (c). (Plots generated using ‘WorkspaceGen.m’ 

provided with this report) 

VI. Neural Network Solutions 

To train and validate the ANNs, we use the solutions obtained from the workspace generation process 

described above. That is, we obtain the following data sets (see also the flowchart in Fig. 4): 

Inverse Kinematic Problem Neural Network (IKPNN): 

 Training Data: “IKPNNTrain.xlsx” 

o Consisting of [Tx, Ty, φ] values for each admissible IKP solution. 

 Target Data: “IKPNNTarg.xlsx” 

o Consisting of [L1, L2, θ1, θ2] values for each admissible IKP solution. 

The FKP Neural Network (FKPNN) uses the same data sets, but in the opposite capacity: 

 Training Data: “IKPNNTarg.xlsx” 

(a) (b) 

(c) 
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o Consisting of [L1, L2, θ1, θ2] values for each admissible IKP solution. 

 Target Data: “IKPNNTrain.xlsx” 

o Consisting of [Tx, Ty, φ] values for each admissible IKP solution. 

Using only the admissible solutions from the generation of the workspace, it was quite easy to find 

very good (or perfect) correlation between the ANN outputs and analytical solutions. For example, in 

Table 1, we list some network configurations that worked well. Notice that the single-layer net 

performed admirably, even for only 10 neurons.  

Table 1: Network Architectures Tested and resulting R-values 

Net Type 
Neurons 
per Layer 

Data 
Division 
(divideFcn) 

Output 
Processing 
(processFcns) 

Epochs 
R-value 
(All) 

IKPNN1 fitnet [10, 10] dividerand 
Layer 1: mapminmax 
Layer 2: mapminmax 

1000 1 

IKPNN2 patternnet [10, 10] dividerand 
Layer 1: mapminmax 
Layer 2: mapminmax 

421 0.99999 

IKPNN3 patternnet [10] dividerand Layer 1: mapminmax 498 0.99948 

IKPNN4 fitnnet [10, 10] dividerand 
Layer 1: mapminmax 
Layer 2: mapminmax 

1000 1 

FKPNN1 fitnnet [10, 10] dividerand 
Layer 1: mapminmax 
Layer 2: mapminmax 

1000 1 

In the figures below, we visualize the fitness of a few of these networks. Notice that every network 

tested converged to a very high correlation value. The results in Figs. 7 and 10, with a perfect 

correlation of R=1, were not difficult to achieve. In Figs. 8 and 11 we see the error histogram, which 

indicates that once training had completed, nearly all validation checks for the IKPNN had a negligible 

error. The error band was just slightly larger for the FKPNN, but still well within acceptable ranges. 
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Figure 7. IKPNN 

 
Figure 8. IKPNN 
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Figure 9. IKPNN 

 

Figure 10. FKPNN 
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Figure 11. FKPN 

 
Figure 12. FKPNN 

On the other hand, using all the solutions available from the workspace evaluation process (not only 

the admissible solutions) introduces some singular points and ambiguity in the NN solution. For 

example, we have theorized that at certain points in the solution field (again, including inadmissible 

solutions) very little change in the prismatic elements results in large changes in the platform pose.  

The networks that achieved good results were actually rather large, on the order of 4 layers of 10-30 

neurons each.  In this manner the ambiguous results seem to be minimized rather effectively, leading 
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to correlation values of about R=0.99999. At the cost of added complexity the results are quite good, 

although not exactly “perfect.” Note that this is unlike the simpler ANNs above that use only the 

admissible solution field.  

Finally, regardless of the number of network layers, all of the ANN architectures tested in this report 

are able to compute and produce highly accurate output nearly instantaneously.  

VII. Conclusions  

In this report, we have demonstrated the accuracy for which both forward kinematic and inverse 

kinematic problems can be computed with an Artificial Neural Network.  In addition, several Matlab 

programs were written and are available for interactive usage for future students and researchers.  


