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--------- Excerpt begins --------- 

1 Mathematical Formulation: Interior Penalty DGM 

Overview  

Discontinuous Galerkin (DG) methods are versatile numerical techniques in computational 

mechanics that generalize finite element weak formulations by allowing jump-

discontinuities in the problem unknowns across interior boundaries [1]. In contrast to 

continuous Galerkin (CG) methods, each discontinuous subdomain is permitted to use 

independent element shape functions, non-conforming meshes, and even distinct physical 

models [2]. Each region is then coupled to its neighbors through boundary integrals which 

naturally occur when integrating by parts over each subdomain [1].  

The Interior Penalty DGM (IP DGM) is a specific DG method that guarantees the consistency 

and stability of the solution based on the selection of appropriate numerical “fluxes” across 

interelement boundaries. Although many authors have contributed to the method over the 

years, the origin of the IP DGM is usually traced to Nitsche [3] where it was used to enforce 

Dirichlet boundary conditions. Indeed, the general formulation is still often referred to as 

“Nitsche’s method” in the literature. For authoritative general references of DG methods, 

we point the reader first to the works published by Arnold et al. [4], and by Cockburn [5]. 

For the specific application of the IP DGM for solid mechanics, we have found the works by 

Hansbo and Hansbo in [6] and [2], by Kaufmann[7], and by Noels and Radovitzky [1] to be 

both useful and concise.  

For our purposes, the main advantages provided by DG methods include:  

• Elimination of artificial compliance across interelement boundaries prior to the onset of 

damage.  
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• Importantly, the IP DGM is suitable for both explicit and implicit solvers1.  

• A powerful way to represent discontinuities present in a physical model. 

Like the strategy used in the MPC-based version of the selectively activated CZM, to achieve 

our goals we require the ability to: 

• Activate/deactivate the IP formulation at any interelement boundary to model the 

growth of cracks. 

• Base the activation criteria on the stress state within the elements on either side of an 

interface.  

• Use the technique with Abaqus. 

The IP DGM is not available in any commercially available FEM code. Therefore, the 

implementation developed for this report is based on the references cited above and has 

been programmed through various user subroutines so that the approach is compatible 

with Abaqus.  

General Form of the IP DGM 

The IP DGM enforces continuity of the solution across discontinuous elements through 

additional terms in the finite element weak form. As we show in the sections below, the 

general form is obtained by integrating by parts and summing contributions over each 

element 𝐾 and at each interior interface Γ in the mesh, to arrive at: 

∑ ∫ 𝜀(𝑣) ∶ 𝐶 ∶ 𝜀(𝑢)
𝐾𝐾

− ∑ (∫⟦𝑣⟧ ∶ {𝜎(𝑢)}
Γ

+ ∫⟦𝑢⟧ ∶ {𝜎(𝑣)}
Γ

− ∫𝜂⟦𝑣⟧ ∶ ⟦𝑢⟧
Γ

)

Γ∈Γ𝐼

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

 
(1.1) 

 

where:  

                                                   
1 Implementation Note: The IP DGM is well-suited for parallelization in the explicit FEM. 



 

𝑢 ≡ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛𝑜𝑑𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 
𝑣 ≡ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠) 
𝑓 ≡ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠 
𝐶 ≡ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑣𝑒 𝑡𝑒𝑛𝑠𝑜𝑟  
𝜂 ≡ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝜀(𝑣) ≡ ∇𝑣 ≡ 𝑡𝑒𝑛𝑠𝑜𝑟 𝑡𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛𝑠) 
𝜀(𝑢) ≡ ∇𝑢 ≡ 𝑠𝑡𝑟𝑎𝑖𝑛 𝑡𝑒𝑛𝑠𝑜𝑟 
𝜎(𝑣) ≡ (𝐶 ∶ 𝜀(𝑣)) ≡ 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟 

𝜎(𝑢) ≡ (𝐶 ∶ 𝜀(𝑢)) ≡ 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟 
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Figure 1-1. Two adjacent elements in the Interior Penalty method, where the interface is defined as 

Γ =∪ 𝜕𝐾± and numerical fluxes are based on the jump and average of element stresses and 

displacements. 

Referring to Figure 1-1, let the interface between two adjacent, but discontinuous, elements 

𝐾± be represented by Γ, where Γ ∪ 𝜕𝐾±. For convenience, we will denote the “+” or “-” sides 

of an interface as “1” and “2”. Note that the order in which the elements are given is not 

important in our formulation, but once chosen the sides are fixed. 

The average operator {●} and the jump operator ⟦●⟧ are used in (1.1) to describe the limit 

values of stresses and displacements at each interface, Γ. The average operator simply 

computes the average of the matrix-valued/tensor quantity (𝜎) at an interface: 

 {𝜎} =
1

2
(𝜎1 + 𝜎2) 

 

 



The jump operator describes the difference in a vector quantity (v) at an interface2: 

 ⟦v⟧ = v1 ⊗ 𝑛1 + v2 ⊗ 𝑛2  

  

The first and third terms in (1.1) are the same as those found in the conventional 

(continuous Galerkin) FEM weak form to compute the work due to internal element 

stresses and the work due to external loads, respectively. The IP DGM includes three 

additional integrals for each interior interface Γ to account for the work done across 

adjacent element surfaces, with the following important properties (c.f. [4, 5, 7-9]): 

• The first interface integral in (1.1) is called the consistency term. This term guarantees 

that the IP method will find any continuous solution 𝑢 that can be represented by the 

finite element shape functions, such that ⟦𝑢⟧ = 0.  

• The second interface integral is called the symmetry term. When combined with the 

consistency term the IP method becomes symmetric in 𝑢 and 𝑣. Accordingly, the 

resulting interface stiffness matrices are also symmetric.  

• The third interface integral is called the stability term. This term acts to weakly enforce 

displacement compatibility and the stability of the IP method. The stability term has a 

form like that used for the cohesive penalty-based TSL. However, a lower bound for the 

penalty factor 𝜂 can be found that stabilizes the method and guarantees that the 

interface stiffness matrix is positive-definite.  

Derivation of the IP DGM 

The following derivations are based on those found in [7],[4] with some departures which 

affect the final form of the IP DGM equations and the overall presentation. 

1.1.1 Discontinuous Discretization 

In the Discontinuous Galerkin Method (DGM), we refer to the subdivision of a domain Ω 

into multiple non-overlapping subregions separated by internal discontinuities. To help 

formalize the definitions used in the following sections, a simple example is shown in 

Figure 1-2, where:  

                                                   
2 Implementation Note: Both v and 𝑛 are column-vectors, so that with the outer product 

defined as (v ⊗ 𝑛) = (v ⋅ 𝑛𝑇) the jump operator results in a matrix-valued output. 



 

Ω ≡ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐷𝑜𝑚𝑎𝑖𝑛 
𝜕Ω ≡ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 Ω 
Ω1 ≡ 𝑆𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛 1 
Ω2 ≡ 𝑆𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛 2 

𝜕Ω𝑖 ≡ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑠 𝑜𝑓 𝑖𝑡ℎ 𝑆𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛 
Γ ≡ 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐷𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 

 

  

 

Figure 1-2. Example subdivision of a domain. 

The complete domain Ω is defined as the collection of all 𝐸 subregions, Ω =∪𝑖
𝐸 Ω𝑖. Let 𝜕Ω be 

the (external) boundary of Ω. We assume that each subregion is non-overlapping, such that 

Ω𝑖 = Ω\Ω𝑗,𝑗≠𝑖, and the boundary of the 𝑖𝑡ℎ subregion is represented by the set 𝜕Ω𝑖. Let Γ be 

the intersection of two adjacent subregions, Γ = Ω𝑖 ∩ Ω𝑗,𝑗≠𝑖. Then, each point 𝑝 on Γ may be 

split into corresponding points 𝑝± from the surfaces 𝜕Ω± with normal vectors 𝑛±. Then, for 

example, in Figure 1-2 we have: 

 

𝐸 = 2 
Ω =∪𝑖

2 Ω𝑖 = Ω1 ∪ Ω2 
Ω1 = Ω\Ω2 
Ω2 = Ω\Ω1 

Γ =  Ω1 ∩ Ω2 

 

  

Discretization of the domain into elements for the FEM results in an approximation of Ω 

represented by Ωℎ. We may then view each subdivision of Ωℎ as an element 𝐾 with faces 

𝜕𝐾. We next define Γ∗ = ∪𝐸 𝜕𝐾 as the set that collects all internal and external element faces 

over the complete domain.  

We assume that discontinuity surfaces occur only at interior interelement boundaries, aka 

the interfaces. Therefore, in a slight abuse of notation, we reuse the symbol Γ to represent 

an interface within the discretized domain. Thus, an interior interface Γ represents the set 

of all points at the shared boundary of two adjacent elements, so that Γ = 𝐾+ ∩ 𝐾− = 𝜕𝐾+ ∪



𝜕𝐾−, and Γ ⊂ 𝜕𝐾±. Let 𝐹 be the total number of interior interface sets. We then let the set 

of all 𝐹 interior interface sets be represented by Γ𝐼 = ∪𝐹 Γ. 

We call each generic surface 𝑓 ∈ Γ∗ of the discretized domain a “mesh face”. On the external 

boundary, a mesh face is the exterior element face 𝑓 = 𝜕𝐾 ∈ 𝜕Ωℎ. On the interior of the 

mesh, a mesh face is the union of the faces for two adjacent elements, so that 𝑓 = Γ ∈ Γ𝐼.  

Remark: In a fully discontinuous mesh, each element contains a unique set of DOF that are 

not shared with any other element, and the IP DGM formulation is used at every interior 

interface. However, in the present work we permit meshes to be split at all interelement 

boundaries, or at specified locations only. Therefore, the IP DGM may be used at any 

subset of interelement boundaries, while the standard continuous FEM is used elsewhere. 

This flexible implementation is useful for minimizing the introduction of additional DOF 

wherever they are not desired.  

1.1.2 Limit Values 

The average and jump in interface quantities (such as stress 𝜎 and displacements 𝑢) are the 

limit values taken from 𝐾±, evaluated at corresponding points 𝑝± on element boundaries 

𝜕𝐾± with surface normals 𝑛± which are originally coincident when an interface is closed.  

1.1.3 Average Operator 

The average operator {●} simply computes the average of a vector quantity (v) or of a 

matrix/tensor quantity (𝜎) at an interface: 

 {v} =
1

2
(v1 + v2) (1.2) 

  

 {𝜎} =
1

2
(𝜎1 + 𝜎2) 

(1.3) 

  

1.1.4 Jump Operator 

The jump operator ⟦●⟧ describes the difference in a vector quantity (v) or a matrix/tensor 

quantity (𝜎) at an interface: 

 ⟦v⟧ = v1 ⊗ 𝑛1 + v2 ⊗ 𝑛2 (1.4) 

  

 ⟦𝜎⟧ = 𝜎1 ⋅ 𝑛1 + 𝜎2 ⋅ 𝑛2 (1.5) 
  



Note that in (1.4), v and 𝑛 are column-vectors, and v ⊗ 𝑛 = v ⋅ 𝑛𝑇 is the outer product. Also, 

note that ⟦●⟧ maps vectors to matrices, and matrices to vectors in the direction of the 

surface normal 𝑛. 

1.1.5 Average and Jump on an External Boundary 

The average and jump of the displacement vector, 𝑢, for a point on an element face on the 

external boundary, 𝜕𝐾 ∈ 𝜕Ωℎ, is defined as: 

 {𝑢} = 𝑢1 = 𝑢 (1.6) 
 

 ⟦𝑢⟧ = 𝑢1 ⊗ 𝑛1 = 𝑢 ⋅ 𝑛𝑇 (1.7) 
  

1.1.6 Scalar Jump Operator 

Following the notation of Kaufmann [7], we also define a scalar jump operator, which maps 

scalars to vectors: 

 
⟦𝑐⟧𝑠 = 𝑐1 ⋅ 𝑛1 + 𝑐2 ⋅ 𝑛2 

= v 
(1.8) 

  

and maps vectors to scalars: 

 
⟦v⟧𝑠 = v1 ⋅ 𝑛1 + v2 ⋅ 𝑛2 

= 𝑐 
(1.9) 

 

1.1.7 Jump-Average Identity 

The jump operator, average operator, and scalar jump operator are related by the identity: 

 ⟦v ⋅ 𝜎⟧𝑠 = ⟦v⟧ ∶ {𝜎} + {v} ⋅ ⟦𝜎⟧ (1.10) 
  

Note that the identity maps a vector (v ⋅ 𝜎) to a scalar, as in (1.9). The proof of the identity is 

given in Appendix A. 

1.1.8 Ordering 

The interface equations developed for this report are based on an “ordering independent” 

formulation. Contributions from either side of an interface are added together to generate 

the IP constraint, so that whether a side is chosen as “+” or “-” is completely arbitrary. Once 

chosen, however, the specified sides are fixed so that contributions from each side are 

properly assembled to the global system of equations.  



In the current work, a discontinuous mesh is constructed by visiting each element and 

splitting it from its neighbors. For each element-neighbor pair, the current element being 

visited is assigned to side “1”, and its neighbor is assigned to side “2” (see Figure 1-1). To 

remain consistent with this scheme, in the following sections we choose to represent the 

adjacent elements with “1” and “2” instead of “+” and “-”, respectively. Of course, an element 

may be designated as either “1” or “2” for any element-neighbor pair it is involved in.  

Remark: In the literature (c.f. [10],[11],[12]), it is common to see the jump operator defined 

with one of the alternatives: 

 ⟦●⟧ = (●1 − ●2) ⋅ 𝑛   OR    ⟦●⟧ = (●2 − ●1) ⋅ 𝑛  
  

In either of the alternative forms above, a dependency on the order in which the elements 

are assigned is introduced. This is directly caused by the selection of a single normal vector 

𝑛 to describe the orientation of the interface. For example, selecting −𝑛2 = 𝑛1 = 𝑛, we reach 

the expression ⟦●⟧ = (●1 − ●2) ⋅ 𝑛, so that values computed on side 2 of an interface are 

subtracted from the values computed on side 1. The benefit of using one of these 

“ordering-dependent” forms is that it clearly computes the difference in a quantity across an 

interface.  

In contrast, the form shown in (1.4) or (1.5) is “ordering-independent”. This was also 

pointed out by Arnold, et al. [4], who stated, “The advantage of these definitions is that they do 

not depend on assigning an ordering to the elements, 𝐾𝑖”. In practice, we feel this distinction is 

relatively minor. 

More importantly, the expression ⟦●⟧ = (●1 − ●2) ⋅ 𝑛 implies that the normal vectors on 

each side of the interface are colinear, such as illustrated in Figure 1-2. This simplification 

becomes embedded in the interface equations and is therefore assumed to hold true at all 

times during an analysis. This assumption is valid when the strength of the DG constraint is 

sufficient to keep the interface closed. On the other hand, in (1.4) and (1.5) the two normal 

vectors 𝑛1 and 𝑛2 are not assumed to be colinear.  

In this report we apply the “ordering-independent” form of the jump operator. We then 

continue to preserve the distinction between the two surface normals 𝑛1 and 𝑛2 

throughout all derivations and into the final discretized equations and numerical 

implementation. As we shall see, this choice manifests itself in the final form of the IP 

interface equations used to compute the balance of forces and enforce compatibility 

between adjacent elements. As such we consider it to be a more precise representation of 

the governing interface equations.  

We do note that when the interface separation gap is small the surface normals are indeed 

approximately colinear. Mathematically, this condition is expressed as: 



 ⟦𝑢⟧ ≈ 0   ⟹    −𝑛2 ≈ 𝑛1 (1.11) 
  

Thus, the order-independent and order-dependent forms are functionally equivalent if the 

interface gap is small. Nevertheless, the distinction is important for activated interface 

elements in a cohesive zone, where larger separations occur during the damage process.  

1.1.9 Strong and Weak Forms  

From linear elasticity and continuum mechanics, we use the constitutive relation (1.12) and 

the strong form of the static equilibrium statement (1.13): 

 𝜎 = 𝐶 ∶ 𝜀(𝑢) (1.12) 

  

 ∇ ∙ 𝜎 = −𝑓 (1.13) 

  

Now, following the usual Galerkin method, we discretize the domain and multiply (1.12) by 

a tensor test function 𝜏, and (1.13) by a vector test function 𝑣. Integrating over an individual 

element 𝐾, we obtain the weak form of the equations: 

 ∫ 𝜏 ∶ 𝜎
𝐾

= ∫ 𝜏 ∶
𝐾

𝐶 ∶ 𝜀(𝑢) (1.14) 

  

 ∫ ∇ ⋅ 𝜎 ⋅ 𝑣
𝐾

= − ∫ 𝑓 ⋅ 𝑣
𝐾

 (1.15) 

  

In a discontinuous mesh, the DOF for each element 𝐾 are independent and uncoupled 

from those of its neighbors. Therefore, we seek a method to control interactions between 

elements. We begin by expressing the constitutive equation (1.14) and equilibrium 

statement (1.15) as the sum of volume and surface contributions.  

Integrating by parts over the right-hand side of (1.14), the constitutive equation may be 

rewritten the as: 

 ∫ 𝜏 ∶ 𝜎
𝐾

= − ∫ ∇ ⋅ (𝜏 ∶ 𝐶)
𝐾

⋅ 𝑢 + ∫ 𝑢 ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑛
𝜕𝐾

 (1.16) 

  

Then, by applying the divergence theorem to the left-hand side of the weak equilibrium 

statement of (1.15) and rearranging, we obtain: 



 ∫ 𝜎 ∶ 𝜀(𝑣) = ∫ 𝑓 ⋅ 𝑣
𝐾

+ ∫ 𝑣 ⋅ 𝜎 ⋅ 𝑛
𝜕𝐾𝐾

 (1.17) 

  

1.1.10 Flux Formulation 

Both displacements 𝑢 and stresses 𝜎 are dual-valued on the interelement boundaries 𝜕𝐾± 

within a discontinuous mesh. Therefore, in the IP DGM we take contributions from each of 

the adjacent elements to define the numerical fluxes �̂� and �̂�: 

 �̂� = {𝑢} (1.18) 

  

 �̂� = {𝐶 ∶ 𝜀(𝑢)} − 𝜂⟦𝑢⟧ (1.19) 

  

The displacement flux �̂� is a vector that describes the average displacement for 

corresponding points 𝑝± across an interface. The stress flux �̂� describes the average stress 

across the interface, along with an additional term, 𝜂⟦𝑢⟧, that penalizes displacement 

jumps.  

We seek to use these fluxes to enforce displacement continuity and traction equilibrium. 

Therefore, (1.16) and (1.17) may be rewritten in the so-called DG “flux formulation”: 

 

∫ 𝜏 ∶ 𝜎
𝐾

= − ∫ ∇ ⋅ (𝜏 ∶ 𝐶)
𝐾

⋅ 𝑢 + ∫ �̂� ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑛
𝜕𝐾

 

 

= − ∫ ∇ ⋅ (𝜏 ∶ 𝐶)
𝐾

⋅ 𝑢 + ∫ {u} ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑛
𝜕𝐾

 

(1.20) 

  

 

∫ 𝜎 ∶ 𝜀(𝑣) = ∫ 𝑓 ⋅ 𝑣
𝐾

+ ∫ 𝑣 ⋅ �̂� ⋅ 𝑛
𝜕𝐾𝐾

 

 

= ∫ 𝑓 ⋅ 𝑣
𝐾

+ ∫ 𝑣 ⋅ ({𝐶 ∶ 𝜀(𝑢)} − 𝜂⟦𝑢⟧) ⋅ 𝑛
𝜕𝐾

 

(1.21) 

  

We focus first on the weak constitutive relation in (1.20). Summing over all elements in the 

mesh, we rewrite this equation as: 

 ∑ ∫ 𝜏 ∶ 𝜎
𝐾𝐾

= − ∑ ∫ ∇ ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑢
𝐾𝐾

+ ∑ ∫ {𝑢} ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑛
∂𝐾𝐾

 (1.22) 

  



Now, using the Divergence Theorem to rewrite the first term on the RHS of (1.22), we 

obtain: 

 

∑ ∫ 𝜏 ∶ 𝜎
𝐾𝐾

= ∑ ∫ (𝜏 ∶ 𝐶) ∶ 𝜀(𝑢)
𝐾𝐾

 

 

− ∑ ∫ 𝑢 ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑛
𝜕𝐾𝐾

 

 

+ ∑ ∫ {𝑢} ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑛
∂𝐾𝐾

 

(1.23) 

  

where we have also used ∇ ⋅ 𝑢 = 𝜀(𝑢). Note that in (1.23) there are now two surface 

integrals for each surface on every element. Combining them, we reach an updated form:  

 ∑ ∫ 𝜏 ∶ 𝜎
𝐾𝐾

= ∑ ∫ (𝜏 ∶ 𝐶) ∶ 𝜀(𝑢)
𝐾𝐾

+ ∑ ∫ ({𝑢} − 𝑢) ⋅ (𝜏 ∶ 𝐶) ⋅ 𝑛
𝜕𝐾𝐾

 (1.24) 

  

We next focus on the final term on the RHS of (1.24). We make the following observations:  

• This expression describes the average displacement vector, {𝑢}, multiplied by a traction 

vector resulting from the stress within the material, (𝜏 ∶ 𝐶) ⋅ 𝑛. Thus, the final value is a 

scalar. 

• The integral is computed at every internal and external element surface, for each 

element in the mesh – that is, for every surface 𝑓 in the set Γ∗ = ∪𝐸 𝜕𝐾. Therefore, each 

interior element surface is integrated twice (once from each element on either side of 

the interface). 

In addition, we point out: 

• The displacement vector, �̂� = {𝑢}, is single-valued on each internal and external surface 

in the set Γ∗.  

• The boundary tractions, (𝜏 ∶ 𝐶) ⋅ 𝑛, are dual-valued on each internal surface. 

Therefore, we use the scalar jump operator defined in (1.4) to rewrite the expression in a 

form that requires only a single integration over interior boundaries: 

 ∑ ∫ 𝜏 ∶ 𝜎
𝐾𝐾

= ∑ ∫ (𝜏 ∶ 𝐶) ∶ 𝜀(𝑢)
𝐾𝐾

+ ∑ ∫⟦({𝑢} − 𝑢) ⋅ (𝜏 ∶ 𝐶)⟧𝑠
𝑓𝑓∈Γ∗

 (1.25) 

  



Note that with the displacement vector {𝑢} on the exterior boundary 𝜕Ωℎ defined in (1.6), 

the integral over the set Γ∗ accounts for both interior and exterior mesh faces. We also note 

that this term vanishes when the displacements of corresponding points 𝑝± on either side 

of an interface are equal: 

 𝑢1 = 𝑢2    ⟺    {𝑢} = 𝑢 (1.26) 
  

In addition, whenever (1.26) holds, it implies ⟦𝑢⟧ = 0 and the two element surfaces are 

coincident. Then the outward normal vectors on either side of the discontinuity are 

colinear, but pointed in opposite directions so that they have the relationship: 

 𝑛2 = −𝑛1 (1.27) 
  

Thus, (1.25) is also a valid expression for the standard (continuous Galerkin) finite element 

method, because the surface integral is potentially non-zero only for meshes with interior 

discontinuities. 

We now focus on the weak equilibrium statement in (1.21). Summing over all elements in 

the mesh, we rewrite this equation as: 

 ∑ ∫ 𝜎 ∶ 𝜀(𝑣)
𝐾𝐾

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

+ ∑ ∫ 𝑣 ⋅ ({𝐶 ∶ 𝜀(𝑢)} − 𝜂⟦𝑢⟧) ⋅ 𝑛
𝜕𝐾𝐾

 (1.28) 

  

We make the following observations for the surface integral in the final term on the RHS: 

• The vector test function 𝑣 is dual-valued on each internal surface. 

• The stress flux, �̂� = ({𝐶 ∶ 𝜀(𝑢)} − 𝜂⟦𝑢⟧) is single-valued on each internal and external 

element surface in the mesh. 

• The surface integral is computed at every internal and external element surface, for 

each element in the mesh, so that each interior element surface is integrated twice 

(once from each element on either side of the interface). 

Therefore, we again use the scalar jump operator to rewrite the expression in a form that 

requires only a single integration over interior boundaries. Then, the global equilibrium 

statement becomes: 

 ∑ ∫ 𝜎 ∶ 𝜀(𝑣)
𝐾𝐾

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

+ ∑ ∫⟦𝑣 ⋅ ({𝐶 ∶ 𝜀(𝑢)} − 𝜂⟦𝑢⟧)⟧𝑠
𝑓𝑓∈Γ∗

 (1.29) 

 



Thus, with the updated constitutive relation (1.25) and equilibrium statement (1.29), the 

flux formulation of the IP DGM is complete.  

1.1.11 Primal Formulation 

We next rewrite the flux formulation in its “primal form” so that it is a function of 𝑢 alone, 

suitable for use with the typical displacement-based FEM. Let 𝜏 be a function of the 

gradient of the vector test function: 

𝜏 = 𝜏(∇𝑣) = 𝜀(𝑣) 

The two equations of the DG flux formulation can then be given succinctly as:  

𝐴:      ∑ ∫ 𝜎 ∶ 𝜀(𝑣)
𝐾𝐾

= ∑ ∫ 𝜀(𝑣) ∶ 𝐶 ∶ 𝜀(𝑢)
𝐾𝐾

+ ∑ ∫⟦(�̂� − 𝑢) ⋅ (𝐶 ∶ 𝜀(𝑣))⟧
𝑠

𝑓𝑓∈Γ∗

 

  

𝐵:      ∑ ∫ 𝜎 ∶ 𝜀(𝑣)
𝐾𝐾

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

+ ∑ ∫⟦𝑣 ⋅ �̂�⟧𝑠
𝑓𝑓∈Γ∗

 

(1.30) 

  

By substituting the constitutive relation (1.30.A) into the equilibrium equation (1.30.B), we 

may eliminate the explicit dependence on 𝜎: 

∑ ∫ 𝜀(𝑣) ∶ 𝐶 ∶ 𝜀(𝑢)
𝐾𝐾

+ ∑ ∫⟦(�̂� − 𝑢) ⋅ (𝐶 ∶ 𝜀(𝑣)) − 𝑣 ⋅ �̂�⟧
𝑠

𝑓𝑓∈Γ∗

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

 (1.31) 

  

Using the average operator, the jump operator, and the jump-average identity, we may 

now rewrite the surface integral in the second term of (1.31) as: 

 

∫⟦(�̂� − 𝑢) ⋅ (𝐶 ∶ 𝜀(𝑣)) − 𝑣 ⋅ �̂�⟧
𝑠

𝑓

 

 

          = ∫⟦({𝑢} − 𝑢) 𝜎(𝑣) − 𝑣 ⋅ ({𝜎(𝑢)} − 𝜂⟦𝑢⟧)⟧𝑠
𝑓

 

 

= ∫ (⟦{𝑢} ⋅ 𝜎(𝑣)⟧𝑠 − ⟦𝑢 ⋅ 𝜎(𝑣)⟧𝑠 − ⟦𝑣 ⋅ {𝜎(𝑢)}⟧𝑠 + ⟦𝑣 ⋅ 𝜂⟦𝑢⟧⟧
𝑠
)

𝑓

 

  

= ∫(part1 − part2 − part3 + part4)
𝑓

 

(1.32) 

  

For convenience, we have also assumed the constitutive law can be enforced strongly, so 

that we may write 𝜎(𝑣) = 𝐶 ∶ 𝜀(𝑣) = 𝐶 ∶ ∇𝑣, and likewise, 𝜎(𝑢) = 𝐶 ∶ 𝜀(𝑢) = 𝐶 ∶ ∇𝑢. 



Each part of (1.32) is evaluated using the jump-average identity in (1.10): 

part1: 
 
  

part2: 
  

part3: 
  
 

part4: 
  

⟦{𝑢} ⋅ 𝜎(𝑣)⟧𝑠 = ⟦{𝑢}⟧ ∶ {𝜎(𝑣)} + {{𝑢}} ⋅ ⟦𝜎(𝑣)⟧ 

= 0 + {𝑢} ⋅ ⟦𝜎(𝑣)⟧ 
  
−⟦𝑢 ⋅ 𝜎(𝑣)⟧𝑠 = −⟦𝑢⟧ ∶ {𝜎(𝑣)} − {𝑢} ⋅ ⟦𝜎(𝑣)⟧ 
  

−⟦𝑣 ⋅ {𝜎(𝑢)}⟧𝑠 = −⟦𝑣⟧ ∶ {{𝜎(𝑢)}} − {𝑣} ⋅ ⟦{𝜎(𝑢)}⟧ 

= −⟦𝑣⟧ ∶ {𝜎(𝑢)} − 0 
  

⟦𝑣 ⋅ 𝜂⟦𝑢⟧⟧
𝑠

= ⟦𝑣⟧ ∶ {𝜂⟦𝑢⟧} + {𝑣} ⋅ ⟦𝜂⟦𝑢⟧⟧ 

= +𝜂⟦𝑣⟧ ∶ ⟦𝑢⟧ + 0 

 

  

Thus, after summing all parts in (1.32) we are left with: 

 −⟦𝑢⟧ ∶ {𝜎(𝑣)} − ⟦𝑣⟧ ∶ {𝜎(𝑢)} + 𝜂⟦𝑣⟧ ∶ ⟦𝑢⟧  
  

With this result we can rewrite (1.31) as: 

∑ ∫ 𝜀(𝑣) ∶ 𝐶 ∶ 𝜀(𝑢)
𝐾𝐾

− ∑ ∫(⟦𝑣⟧ ∶ {𝜎(𝑢)} + ⟦𝑢⟧ ∶ {𝜎(𝑣)} − 𝜂⟦𝑣⟧ ∶ ⟦𝑢⟧)
𝑓𝑓∈Γ∗

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

 
(1.33) 

  

In the current work, we are interested only in the interelement behavior. We choose to 

strongly enforce boundary conditions on the external surfaces of the body in the usual 

manner (rather than weakly prescribing them through the surface integrals via the jump 

and average operators). Therefore, we can limit the surface integrals to just the set of 

interior surfaces, 𝑓 = Γ ∈ Γ𝐼: 

∑ ∫ 𝜀(𝑣) ∶ 𝐶 ∶ 𝜀(𝑢)
𝐾𝐾

− ∑ ∫(⟦𝑣⟧ ∶ {𝜎(𝑢)} + ⟦𝑢⟧ ∶ {𝜎(𝑣)} − 𝜂⟦𝑣⟧ ∶ ⟦𝑢⟧)
ΓΓ∈Γ𝐼

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

 
(1.34) 

  

Rearranging the interface terms for clarity, we arrive at the general form of the IP DGM: 

 

∑ ∫ 𝜀(𝑣) ∶ 𝐶 ∶ 𝜀(𝑢)
𝐾𝐾

− ∑ (∫⟦𝑣⟧ ∶ {𝜎(𝑢)}
Γ

+ ∫⟦𝑢⟧ ∶ {𝜎(𝑣)}
Γ

− ∫𝜂⟦𝑣⟧ ∶ ⟦𝑢⟧
Γ

)

Γ∈Γ𝐼

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

 

(1.35) 

  



In addition to the standard (continuous Galerkin) FEM terms, the IP method contains three 

interface integrals for each Γ ∈ Γ𝐼. The first integral ensures consistency of the IP 

formulation, and is referred to as the consistency term. When the consistency term is 

combined with the second integral, the form is symmetric in 𝑢 and 𝑣. Therefore, the second 

integral is referred to as the symmetry term. The third integral weakly enforces continuity of 

the displacements and is referred to as the stability term.   

By expanding each term in (1.36) and using the average and jump operators defined in 

(1.3) and (1.4), we see that the two surface normals 𝑛1 and 𝑛2 have been preserved, as 

desired:  

∑ ∫ 𝜀(𝑣) ∶ 𝐶 ∶ 𝜀(𝑢)
𝐾𝐾

 

 

− ∑ ∫(𝑣1 ⊗ 𝑛1 + 𝑣2 ⊗ 𝑛2)
Γ

∶
1

2
(𝜎1(𝑢) + 𝜎2(𝑢))

Γ∈Γ𝐼

 

 

− ∑ ∫(𝑢1 ⊗ 𝑛1 + 𝑢2 ⊗ 𝑛2) ∶
1

2
(𝜎1(𝑣) + 𝜎2(𝑣))

ΓΓ∈Γ𝐼

 

 

+ ∑ ∫𝜂 (𝑣1 ⊗ 𝑛1 + 𝑣2 ⊗ 𝑛2) ∶ (𝑢1 ⊗ 𝑛1 + 𝑢2 ⊗ 𝑛2)
ΓΓ∈Γ𝐼

  

  

= ∑ ∫ 𝑓 ⋅ 𝑣
𝐾𝐾

 

(1.36) 

  

Thus, the IP DGM primal formulation is complete. 

Specialization: Weighted Averaging 

In composites and adhesive joints, the material properties on either side of an interface 

may be significantly different. To account for this in the stress flux across the interface, we 

can use a weighted average operator, which directly affects the consistency and symmetry 

terms in the IP DGM. For example: 

 {𝜎} = 𝛾1𝜎1 + 𝛾2𝜎2    where    𝛾1 + 𝛾2 = 1 (1.37) 
  

As shown by Annavarapu [11], the weight factors, 𝛾𝑖, for each side of an interface may be 

based on element moduli 𝜅 and geometric factors such as the characteristic element size ℎ. 

A general expression for the weights is then given by: 



 

𝛾𝑖 =
ℎ𝑖 𝜅𝑖⁄

ℎ1 𝜅1⁄ + ℎ2 𝜅2⁄
 

  
where 𝑖 = 1,2 

(1.38) 

  

Since the interface weights must sum to unity, (1.37) can be written with the equivalent 

expression {𝜎} = 𝛾1𝜎1 + (1 − 𝛾1)𝜎2 or even {𝜎} = (1 − 𝛾2)𝜎1 + 𝛾2𝜎2 if desired. Note that if the 

material and element size are the same for both element, the weight factors for each side 

of the interface become 𝛾𝑖 = 1 2⁄ , in which case the weighted average operator is equal to 

the mean and matches the definition in (1.3).  

For our purposes, we calculate the element moduli factor 𝜅𝑖 for each side of the interface 

with the (Frobenius) induced matrix norm of its constitutive matrix, 𝐶: 

  𝜅 = ‖𝐶‖F = √(∑ ∑ |𝑐𝑖𝑗|
2𝑛

𝑗=1

𝑚

𝑖=1
) (1.39) 

  

Finally, as suggested [11], we use the same concept to consistently scale the user-defined 

scalar penalty parameter (𝜂0) used in the IP method stability term, so that it is also updated 

to account for the constitutive properties and element sizes, and the newly computed 

interface weights (𝛾1) and (𝛾2): 

 
𝜂 =

𝜂0 ℎΓ

ℎ1
𝜅1

+
ℎ2
𝜅2

 
(1.40) 

  

Specialization: Acoustic Tensor 

Importantly, the stability of the IP DGM is influenced by a penalty parameter. As previously 

mentioned, this parameter must only be sufficiently large to result in a positive definite 

interface stiffness matrix, unlike the penalty-stiffness used in the conventional CZM. We 

feel that a global value for all interfaces should be assumed only if there is no other option, 

and that a minimum penalty parameter may be found by considering each interface 

independently. Fortunately, in the formulation developed for this report, we have 

implemented an approach where the penalty is automatically adjusted according to the 

local conditions at each interface, with very good results.  

In the derivations above, the IP DGM stress flux in (1.19), (�̂� = {𝐶 ∶ 𝜀(𝑢)} − 𝜂⟦𝑢⟧), is defined 

to include the penalty parameter 𝜂, which is typically assumed to be scalar value. After 

writing the IP method in its primal form (1.35), the penalty is applied to the stability term 

and is written: 



 ∫𝜂 ⟦𝑣⟧ ∶ ⟦𝑢⟧
Γ

 (1.41) 

  

We choose to allow the penalty to vary for each interface, Γ. In addition, rather than 

assuming 𝜂 takes a scalar value, we specialize the penalty parameter to be of the form: 

 𝜂 = 𝜂0𝛼 (1.42) 
  

In this expression, 𝜂0 is assumed to be a scalar multiplier such that 𝜂0 ≥ 1, and 𝛼 represents 

an “interfacial acoustic tensor”, which accounts for constitutive properties, 𝐶, for the 

materials on either side of each interface. For instance, the acoustic tensor of each side of 

an interface can be given by: 

 

𝛼𝑖 = 𝑛𝑖 ⋅ 𝐶𝑖 ⋅ 𝑛𝑖
𝑇 

 

where 𝑖 = 1,2 

(1.43) 

  

Thus, for a 2D model, the acoustic tensor for each side of an interface takes the form of a 

2x2 matrix so that constitutive properties are projected in the direction of the element’s 

outward-facing surface normal, 𝑛𝑖. Therefore, the appropriate form of (1.41) is rewritten: 

 ∫⟦𝑣⟧ ∶ 𝜂 ∶ ⟦𝑢⟧
Γ

 (1.44) 

  

To combine the acoustic tensors from each side of the interface, we assume they can be 

added like two springs in series, such that:  

 𝛼 = 2 (𝛼1
−1 + 𝛼2

−1)−1 (1.45) 
  

Note that if the constitutive properties on either side of the interface are equal, then: 

 𝛼1 = 𝛼2 = 𝛼 (1.46) 
  

With this definition, the penalty parameter 𝜂 is intended to automatically balance the 

contributions from either side of the interface while its components remain of the same 

order as the material constitutive properties. Thus, the effect of penalization on the 

condition number of the Global Stiffness Matrix is minimized, while ensuring stability of the 

IP DGM. Finally, we permit the user to “over-penalize” the IP method stability term by 

defining the scalar multiplier 𝜂0 in the Abaqus input file. This capability may be useful if the 

acoustic tensor approach fails to be sufficient to stabilize the method.  

--------- Excerpt ends --------- 
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